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Local magnetic moments of spin 1/2 in a hole doped antiferromagnetic spin chain
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We investigate local magnetic moments of spin 1/2 in a hole doped antiferromagnetic spin chain. In
the hole doped spin chain massive spinon excitations of spin 1/2 are found owing to the contribution
of the doped holes [R. Shankar, Phys. Rev. Lett. 63, 203 (1989)], which is in contrast with the
undoped spin chain where massless spinons are obtained. Including the Kondo coupling between the
massive spinons and the local spins and integrating over the massive spinons, we obtain an effective
Hamiltonian for the local spins. The Kondo coupling is shown to result in local interactions between
the local spins. This contribution leads the local spins to behave as the Tomonaga-Luttinger liquid in
the half-filled case of the local spins. Further, even in the case of the isotropic Heisenberg coupling
between the local spins, the Umklapp scattering does not cause usual logarithmic corrections in
correlation functions of the local spins owing to the contribution of the massive spinons.

PACS numbers: 75.30.Hx, 71.27.+a, 71.10.Hf, 75.30.Mb

Recently we showed that in a hole doped antiferromag-
netic spin chain a magnetic moment of spin 1/2 emerges
in a non-magnetic impurity[1]. The local magnetic mo-
ment results from a spinon of spin 1/2 trapped in the
non-magnetic impurity[1]. In the present study we in-
vestigate the localized spins in the hole doped antifer-
romagnetic spin chain [Eq. (1)]. Here we consider the
half filled case of the localized spins [Eq. (1)]. Then
this problem becomes an extended version of the Kondo
problem. In the Kondo problem scatterings between lo-
cal magnetic moments and non-interacting conduction
electrons are taken into account. On the other hand, the
present study considers local magnetic moments of spin
1/2 interacting with strongly correlated electrons.

In the absence of interactions between the conduction
electrons the problem is usually described by the Kondo
lattice model[2]. It seems to be clearly established that
in the case of the half-filled conduction band the ground
state is the Kondo spin liquid (Kondo insulator) for any
non-zero Kondo coupling in one spacial dimension, which
has a gap to both spin and charge excitations[3, 4, 5].
The behavior away from the half filling (hole doping to
the conduction band) remains controversial[3, 4]. Para-
magnetic metallic phase may be expected[3, 4, 6]. Nu-
merical studies available until now seems to support the
Tomonaga-Luttinger liquid (TLL) with dominant corre-
lations determined by the conduction electrons[3, 4, 6].

Here we consider strongly correlated electrons, the
doped antiferromagnetic spin chain instead of the non-
interacting conduction electrons. The doped spin chain
is described by spinons and holons interacting via U(1)
gauge fields [Eq. (2)]. The spinons carry spin 1/2 of
electrons and the holons, charge +e of doped holes. The
Kondo coupling between the spinons and the local spins
is taken into account [Eq. (5)]. The main message of the
present study is as follows. The presence of the holons
leads the spinons to be massive[1, 7] [Eq. (4)]. Excita-
tions of the massive spinons result in local interactions
between the local spins via the Kondo coupling [Eq. (7)].
This contribution causes the expectation value of the lo-

cal moments to vanish. As a result a paramagnetic phase
is expected to occur. We find that the local spins behave
as the TLL [Eq. (16)]. Further, it is found that the Umk-
lapp scattering does not cause usual logarithmic correc-
tions in correlation functions of the local spins owing to
the contribution of the massive spinons [Eq. (18)].

We consider a doped antiferromagnetic spin chain in
the presence of local magnetic moments

H = Ht−J +Himp +HK ,

Ht−J = −t
N

∑

i=1

(c†σicσi+1 + h.c.) + J

N
∑

i=1

si · si+1,

Himp = I

N
∑

i=1

(

τx
i · τx

i+1 + τy
i · τy

i+1 + ∆τz
i · τz

i+1

)

,

HK = JK

N
∑

i=1

si · τi. (1)

Here the t − J Hamiltonian Ht−J describes the doped
antiferromagnetic spin chain and the Hamiltonian Himp,
the local moments. ∆ denotes Ising anisotropy. The
correlated electrons and the local moments are antifer-
romagnetically correlated via the Kondo coupling HK .
If strong correlations represented by the Heisenberg cou-

pling J
∑N

i=1 si · si+1 and the no-double-occupancy con-

straint
∑2

σ=1 c
†
σicσi ≤ 1 are neglected, this Hamiltonian

is reduced to the Kondo lattice model[2]. Here we deal
with both the strong correlations and the local moments
on an equal footing in the presence of hole doping. As far
as we know, no one has treated both effects on an equal
footing in the presence of hole doping.

For the time being, we focus on the t − J Hamilto-
nian. In the absence of hole doping hopping of electrons
is suppressed and thus the t− J Hamiltonian is reduced
to the Heisenberg Hamiltonian describing a quantum an-
tiferromagnetic spin chain. Low energy physics of the
quantum spin chain can be described by a non-linear σ
model with a Berry phase term[8]. Utilizing CP 1 rep-
resentation, one can represent the non-linear σ model in
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terms of bosonic spinons interacting via compact U(1)
gauge fields in the presence of the Berry phase[8]. Con-
sidering hole doping to the spin chain, Shankar showed
that the doped holes are represented by massless Dirac
fermions dubbed holons and the fermionic holons inter-
act with the bosonic spinons via the U(1) gauge fields[7].
A low energy effective field theory is obtained to be[7]

St−J =

∫

d2x
[

|(∂µ − iaµ)zσ|2 +m2|zσ|2

+
u

2
(|zσ|2)2 − iSǫµν∂µaν

]

+

∫

d2x
[

ψ̄Aγµ(∂µ + iaµ)ψA + ψ̄Bγµ(∂µ − iaµ)ψB

]

.(2)

Here zσ is a bosonic spinon (spin) and ψA(B), a fermionic
holon (charge) in a sublattice A(B). The spinons and
holons interact via the compact U(1) gauge field aµ. m
is a mass of the spinon and u, a strength of a local
interaction[9]. S in the Berry phase term iSǫµν∂µaν rep-
resents the value of spin 1/2. A detailed derivation is
given by Ref. [7]. The presence of the massless Dirac
fermions completely alters the situation in the absence
of those[7, 10]. First, the massless Dirac fermions are
shown to kill the Berry phase effect[10]. As a result the
spinons are expected to be massive[7, 10, 11]. Second,
the contribution of the massless Dirac fermions results
in the massive gauge field. Thus gauge fluctuations are
suppressed in the low energy limit and the spinons and
holons are expected to be deconfined[7, 10]. Last, su-
perconducting correlations between the charge degree of
freedom increase[7]. In order to see this physics one can
utilize the standard bosonization method[7, 10]

ψ̄Aγµ∂µψA =
1

2
(∂µφA)2, ψ̄Bγµ∂µψB =

1

2
(∂µφB)2,

ψ̄AγµψA =
1√
π
ǫµν∂νφA, ψ̄BγµψB =

1√
π
ǫµν∂νφB.(3)

Here φA and φB are bosonic fields in each sublattice.
Inserting these into the above action Eq. (2), one obtains
an effective action[7, 10]

St−J =

∫

d2x
[

|(∂µ − iaµ)zσ|2 +m2|zσ|2 +
u

2
(|zσ|2)2

]

+

∫

d2x
[1

2
(∂µφ+)2 +

1

2
(∂µφ−)2

+i

√

2

π
φ−ǫµν∂µaν − iSǫµν∂µaν

]

(4)

with φ+ = 1√
2
(φA+φB) and φ− = 1√

2
(φA−φB). Shifting

the φ− field to φ− +
√

π
2S, one can easily see that the

Berry phase term is wiped out from the action. Thus the
half-odd integer spin chain is not distinguishable from the
integer spin chain[11]. The bosonic spinon in the doped
half-odd integer spin chain is expected to be massive like
that in the undoped integer spin chain[7, 10, 11]. But
the spinons here are not confined in contrast with the

case of the integer spin chain[7, 10]. Integrating over the
φ− field, we find that the U(1) gauge field becomes mas-
sive and thus it is ignorable in the low energy limit. As
a consequence the massive spinons are deconfined[7, 10].
A spin liquid with massive spinon excitations emerges in
the doped antiferromagnetic spin chain. If we introduce
an electromagnetic field Aµ, we obtain a coupling term of

i
√

2
πφ+ǫµν∂µAν . Integrating over the φ+ field, we obtain

a mass of the electromagnetic field. This implies super-
conductivity in the doped spin chain, which is consistent
with the result of Shankar[7]. In summary, the doped
holes lead the spin degree of freedom to be the gapped
spin liquid and the charge degree of freedom to be super-
conducting. It should be noted that this result is exact
in the low energy limit[7].

Integrating over all bosonic fields φ+, φ−, and aµ ex-
cept the spinons zσ and introducing the Kondo coupling
between the spinons and the local spins, we obtain an
effective action

S = St−J + SK + Simp,

St−J + SK

=

∫

d2x
[

|∂µzσ|2 +m2|zσ|2 +
JK

2
z†ασ

k
αβzβτ

k
]

, (5)

where Simp is associated with the impurity Hamiltonian
Himp in Eq. (1) in the presence of the Berry phase con-
tribution for the local spins. In the above a local inter-
action between the spinon currents originating from in-
tegration over the massive gauge field aµ is not explicitly
taken into account because it is expected to be irrelevant
(marginally) in the low energy limit. We also omit the
local interaction between the spinons. Since it is usually
introduced for phase transitions, it is not necessary any
more. In the previous study[1] we examined the role of
non-magnetic impurities in the hole doped one dimen-
sional Mott insulator. As discussed above, in the doped
Mott insulator the spinons are massive. As a result the
spinon is localized in the non-magnetic impurity and the
impurity behaves as a magnetic one[1]. Here we are con-
sidering the local magnetic moments in the doped Mott
insulator.

At first glance, it seems to be trivial to solve Eq. (5)
since the spinons are massive. The mass is a relevant pa-
rameter in the renormalization group sense. The lower
the energy scale, the larger the mass. As a result it is
expected that the massive spinons do not affect the lo-
calized spins. But the Kondo coupling is expected to be
also a relevant parameter. It also becomes larger as the
energy scale gets lower. In this respect the spinons are
expected to affect the local moments. The competition
between the mass of the spinons and the Kondo coupling
is expected. Since the two relevant parameters are taken
into account, the problem is not so simple.

Integrating over the massive spinons and expanding
a resulting logarithmic term to the second order in the
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Kondo coupling JK , we obtain

L̃ = −Trln
[

−∂2 +m2 +
JK

2
σ · τ

]

≈ −Trln
[

−∂2 +m2
]

+Tr
(1

2

J2
K

4
(σ · τ)xΠ(x− x′)(σ · τ)x′

)

= −Trln
[

−∂2 +m2
]

+
1

2

J2
K

4
τxΠ(x− x′)τx′ ,

Π(q) =

∫

d2k

(2π)2
1

(k + q)2 +m2

1

k2 +m2
. (6)

Here Π(q) is the polarization function of the massive
spinons in momentum space. In real space it exponen-
tially decays owing to the mass of the spinons[12]. A
local interaction between the localized spins is expected
to occur owing to the Kondo coupling with the massive
spinons. We propose a model of the local interaction. In
the Hamiltonian formalism we obtain an effective Hamil-
tonian in terms of the local spins

Heff = Himp + H̃,

Himp = I
N

∑

i=1

(

τx
i · τx

i+1 + τy
i · τy

i+1 + ∆τz
i · τz

i+1

)

,

H̃ = λ

N
∑

i=1

τi · τi

= λ

N
∑

i=1

(

τx
i · τx

i + τy
i · τy

i + τz
i · τz

i

)

(7)

with the coupling constant λ. λ is a function of JK and
m2. The Kondo coupling between the massive spinons
and the local moments results in the local interaction
between the local spins, which is modelled by H̃. This
contribution is expected to cause the expectation value
of the local spins to vanish. If the local spins have a
finite expectation value, the Kondo coupling is expected
to result in Kondo singlets between the massive spinons
and the local spins. Since the spinons are massive, it costs
much energy to form the Kondo singlets. As a result it is
energetically more favorable that the expectation value
of the local spins vanishes. We check this argument using
the Abelian bosonization.

First we introduce the Jordan-Wigner (JW )
transformation[8]

τ+
i = f †

i K(i) = K(i)f †
i ,

τ−i = fiK(i) = K(i)fi,

K(i) = eiπ
∑ i−1

j=1 f†
j

fj = eiπ
∑ i−1

j=1(τz
i + 1

2 ) (8)

with the spin raising and lowering operators, τ+ =
τx + iτy and τ− = τx − iτy, respectively. Here fi is a
JW fermion which represents a kink configuration with
a non-local operator K(i)[8]. Inserting this fermion into
the above Hamiltonian [Eq. (7)] and performing some

algebra[13], we obtain an effective Hamiltonian in terms
of the JW fermions

Heff = Hxy +Hz + H̃,

Hxy =
I

2

N
∑

i=1

(f †
i fi+1 + fi+1f

†
i ),

Hz = I∆

N
∑

i=1

(f †
i fi −

1

2
)(f †

i+1fi+1 −
1

2
),

H̃ = λ

N
∑

i=1

(f †
i fi +

1

4
). (9)

Hxy is the contribution of the XY spin components and
Hz, that of the Z spin component. As well known, the
Ising coupling term is expressed as an interaction between
the JW fermions[8]. H̃ is considered as a chemical poten-
tial term of the JW fermions. Excitations of the massive
spinons control the density of the kink excitations.

Next we represent the JW fermion in terms of a
right handed fermion Ri and a left handed one Li, i.e.,
fi = Rie

ikF xi + Lie
−ikF xi with the Fermi momentum

kF . Using f †
i fi − 1

2 =: f †
i fi := [: R†

iRi : + : L†
iLi :

] + [e−2ikF xi : R†
iLi : +e2ikF xi : L†

iRi :] where : Ô :

is the normal ordering of an operator Ô[8], we obtain a
quadratic Hamiltonian

Hxy =

∫

dr
[

πI(ρR(x)2 + ρL(x)2)
]

,

Hz =

∫

dr
[

I∆(ρR(x) + ρL(x))2 − I∆(χ(x) + χ†(x))2
]

,

H̃ =

∫

dr
[

λ(ρR(x) + ρL(x) + χ(x) + χ†(x))
]

, (10)

where ρR(x), ρL(x) and χ(x), χ†(x) are given by

ρR(x) =: R(x)†R(x) :,

ρL(x) =: L(x)†L(x) :,

χ(x) = e−2ikF x : R†(x)L(x) :,

χ†(x) = e2ikF x : L†(x)R(x) :, (11)

respectively. ρR and ρL represent the density of the
right and left handed fermions respectively. χ and χ+

are associated with scattering between the right and left
handed fermions. Now utilizing the standard bosoniza-
tion of each fermion R(x) and L(x)

R(x) =
1√
2πα

η1e
iφR(x) =

1√
2πα

η1e
i

θ+(x)+θ−(x)

2 ,

L(x) =
1√
2πα

η2e
−iφL(x) =

1√
2πα

η2e
i
−θ+(x)+θ−(x)

2 (12)

with the Klein factors η1 and η2[8], we can represent ρ
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and χ in terms of the bosonic fields θ+ and θ−

ρR(x) =
1

2π
∂rφR(x) =

1

4π
(∂rθ+(x) + ∂rθ−(x)),

ρL(x) =
1

2π
∂rφL(x) =

1

4π
(∂rθ+(x) − ∂rθ−(x)),

χ(x) =
1

2πα
η1η2e

−iθ+(x)−2ikF r,

χ†(x) =
1

2πα
η2η1e

iθ+(x)+2ikF r. (13)

Here the parameter α is a cut-off with magnitude α ∼
1[8]. Inserting these into Eq. (10), we obtain an effective
Hamiltonian in terms of the bosonic fields

Heff = Himp + H̃,

Himp =

∫

dr
[( I

8π
+
I∆

4π2

)

(∂rθ+)2 +
I

8π
(∂rθ−)2

− I∆

2(πα)2
cos 2θ+

]

H̃ =

∫

dr
[ λ

2π
∂rθ+ +

λ

πα
η2η1 sin(θ+ + 2kF r)

]

.(14)

Himp is the same as a usual bosonized Hamiltonian of
the Heisenberg spin chain with the Ising anisotropy[8].
As well known, the cos term in Himp results from the
Umklapp scattering between the left and right handed
fermions[8]. H̃ is the new one. ∂rθ+ is associated with
the total density of the right and left handed fermions,
i.e., ρ ≡ ρR + ρL = 1

2π∂rθ+. The emergence of the total
density term seems to be natural owing to the chemi-
cal potential term of the JW fermion resulting from the
Kondo coupling. The sin(θ+ + 2kF r) term seems to be
due to the fact that the massive spinon excitations scat-
ter the right handed fermion to the left handed fermion.
Below we argue that the cos and sin terms are irrelevant
owing to the linear derivative term, ∂rθ+ in H̃.

Shifting θ+ to θ̃+ − λ
4π

(

I
8π + I∆

4π2

)−1

r, the first term

of H̃ in Eq. (14) is wiped out. As a result we obtain an
effective Hamiltonian

Heff =

∫

dr
[( I

8π
+
I∆

4π2

)

(∂r θ̃+)2 +
I

8π
(∂rθ−)2

− I∆

2(πα)2
cos

(

2θ̃+ − λ

2π

( I

8π
+
I∆

4π2

)−1

r
)

+
λ

πα
η2η1 sin

(

θ̃+ + 2
[

kF − λ

8π

( I

8π
+
I∆

4π2

)−1]

r
)]

.(15)

In the absence of the Kondo coupling, i.e., λ = 0, this ef-
fective Hamiltonian describes the Heisenberg spin chain
with the Ising anisotropy[8]. In the easy plane limit of
∆ ≪ 1 the Umklapp scattering represented by the cos
term is irrelevant and thus the Tomonaga-Luttinger liq-
uid (TLL) is obtained[8]. In the easy axis limit of ∆ ≫ 1
the cos term is relevant and the antiferromagnetic long
range order is expected[8]. In the isotropic case of ∆ = 1
the Umklapp scattering is marginally irrelevant[14] and

thus the TLL is still expected. But in this case the Umk-
lapp scattering results in logarithmic corrections to cor-
relation functions[14, 15]. On the other hand, in the
present case the Umklapp scattering is expected to be ir-
relevant owing to the contribution of the massive spinons.
Excitations of the massive spinons cause the chemical po-
tential term to the kink excitations. This leads to the
linear derivative term of the bosonic field θ+. Shifting

the θ+ field to θ̃+, we obtain the cos term oscillating in
space. Owing to the spacial oscillation it is expected to
be irrelevant[16]. The sin term is also expected be irrel-
evant because of the same reason. As a consequence the
local spins are expected to behave as the TLL indepen-
dent of the Ising anisotropy

Heff =

∫

dr
[( I

8π
+
I∆

4π2

)

(∂r θ̃+)2 +
I

8π
(∂rθ−)2

]

.(16)

Physically this result can be understood as follows. If the
Umklapp scattering becomes relevant and thus it causes
antiferromagnetic ordering of the local spins, the spinons
are expected to form the Kondo singlets owing to the
Kondo coupling. But, since the spinons are massive, it
is energetically unfavorable to form the Kondo singlets.
Thus the paramagnetic state is naturally expected. How-
ever, because the Kondo coupling is a relevant parameter,
it affects the local moments. As a result the boson field
θ+ is renormalized to θ̃+. In terms of the renormalized

boson field θ̃+ the TLL is obtained.
Now we discuss correlation functions. In the absence of

the massive bosonic spinons zσ the isotropic Heisenberg
coupling between the local spins leads the spin-spin cor-
relation function of staggered components to be at zero
temperature[15]

< τz(r, τ)τz(0, 0) >∼ (−1)r

(r2 + τ2)1/2
ln

1
2

√

r2 + τ2(17)

with the position r and the imaginary time τ . The
logarithmic correction results from the Umklapp scat-
tering as pointed out earlier[15]. Similarly, the stag-
gered susceptibility has a logarithmic correction factor
χs(T ) ∼ T−1ln1/2T−1 owing to the same reason. How-
ever, in the present case the isotropic limit of ∆ = 1 does
not cause the logarithmic correction. This is because the
Umklapp scattering becomes irrelevant owing to the con-
tribution of the massive spinons [Eq. (15) and Eq. (16)].
As a result the spin-spin correlation function of the stag-
gered components is given by at zero temperature[14, 17]

< τz(r, τ)τz(0, 0) >∼ (−1)r

(r2 + τ2)1/2
. (18)

Temperature dependence of specific heat C(T ) and stag-
gered susceptibility χs(T ) is given by C(T ) ∼ T and
χs(T ) ∼ T−1, respectively[14].

To summarize, we investigated the effect of strongly
correlated electrons on local magnetic moments in the
one dimensional hole doped Mott insulator in the weak
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Kondo coupling regime. Strong correlation effect causes
the doped Mott insulator to be the gapped spin liquid for
the spin degree of freedom. We found that half filled lo-
cal magnetic moments of spin 1/2 in the one dimensional
gapped spin liquid behave as the Tomonaga-Luttinger
liquid owing to the contribution of the massive spinons

via the Kondo coupling. Further, even in the case of the
isotropic Heisenberg coupling between the local spins, the
Umklapp scattering becomes irrelevant owing to the con-
tribution of the massive spinons and thus no logarithmic
corrections in the spin-spin correlation function, specific
heat, and staggered susceptibility are found.
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1
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0
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z(1 − z)
.

Here J0(x) is the zeroth order Bessel function of the first
kind. K0(x) is associated with the zeroth order Hankel
function. Changing the integration variable z into y via
the relation of mx/

√

z(1 − z) = y, we obtain

Π(x) =
1

2π2

∫ ∞

2mx

dy
K0(y)

√

y2 − 4m2x2
.

In the limit of y ≫ 2mx, using the asymptotic form of
K0(y) =

√

π/2(e−y/
√

y) [G. B. Arfken and H. J. We-
ber, Mathematical Methods For Physicists, Fourth Edi-
tion (Ch. 11), Academic Press (1995)], we obtain the
asymptotic form of the polarization function

Π(x) ≈ 1

(2π)
3
2

∫ ∞

2mx

dy
[e−y

y
3
2

+ 2m2x2 e−y

y
7
2

]

∼ e−2mx

√
mx

.

This integration is also performed by Mathematica 5.0.
[13] The self-interaction τ 2

i is represented in terms of the JW
fermion as

1

2
(τ+

i τ−
i + τ−

i τ+
i ) + τ z

i τ z
i = f†

i fi + (f†
i fi − 1

2
)2

= f†
i fi + f†

i fif
†
i fi − f†

i fi +
1

4

= f†
i fi + f†

i fi − f†
i fi +

1

4
= f†

i fi +
1

4
.

Here we used the relation of f†
i fif

†
i fi = f†

i fi.
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